How to generate weakly infeasible semidefinite programs via Lasserre's relaxations for polynomial optimization

نویسنده

  • Hayato Waki
چکیده

Examples of weakly infeasible semidefinite programs are useful to test whether semidefinite solvers can detect infeasibility. However, finding non trivial such examples is notoriously difficult. This note shows how to use Lasserre’s semidefinite programming relaxations for polynomial optimization in order to generate examples of weakly infeasible semidefinite programs. Such examples could be used to test whether a semidefinite solver can detect weak infeasibility. In addition, in this note, we generate weakly infeasible semidefinite programs from an instance of polynomial optimization with nonempty feasible region and solve them by semidefinite solvers. Although all semidefinite programming relaxation problems are infeasible, we observe that semidefinite solvers do not detect the infeasibility and that values returned by semidefinite solvers are equal to the optimal value of the instance due to numerical round-off errors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Certifying convergence of Lasserre's hierarchy via flat truncation

Consider the optimization problem of minimizing a polynomial function subject to polynomial constraints. A typical approach for solving it globally is applying Lasserre’s hierarchy of semidefinite relaxations, based on either Putinar’s or Schmüdgen’s Positivstellensatz. A practical question in applications is: how to certify its convergence and get minimizers? In this paper, we propose flat tru...

متن کامل

Second-Order Cone Relaxations for Binary Quadratic Polynomial Programs

Several types of relaxations for binary quadratic polynomial programs can be obtained using linear, secondorder cone, or semidefinite techniques. In this paper, we propose a general framework to construct conic relaxations for binary quadratic polynomial programs based on polynomial programming. Using our framework, we re-derive previous relaxation schemes and provide new ones. In particular, w...

متن کامل

A semidefinite relaxation scheme for quadratically constrained

  Semidefinite optimization relaxations are among the widely used approaches to find global optimal or approximate solutions for many nonconvex problems. Here, we consider a specific quadratically constrained quadratic problem with an additional linear constraint. We prove that under certain conditions the semidefinite relaxation approach enables us to find a global optimal solution of the unde...

متن کامل

Solving polynomial least squares problems via semidefinite programming relaxations

A polynomial optimization problem whose objective function is represented as a sum of positive and even powers of polynomials, called a polynomial least squares problem, is considered. Methods to transform a polynomial least squares problem to polynomial semidefinite programs to reduce degrees of the polynomials are discussed. Computational efficiency of solving the original polynomial least sq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optimization Letters

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2012